Polynomial Approximation of Functions in Sobolev Spaces

نویسندگان

  • Todd Dupont
  • Ridgway Scott
چکیده

Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hubert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Approximation of Functions

Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hubert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer o...

متن کامل

Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree

We consider error estimates for the interpolation by a special class of compactly supported radial basis functions. These functions consist of a univariate polynomial within their support and are of minimal degree depending on space dimension and smoothness. Their associated \native" Hilbert spaces are shown to be norm-equivalent to Sobolev spaces. Thus we can derive approximation orders for fu...

متن کامل

Best Polynomial Approximation on the Unit Sphere and the Unit Ball

This is a survey on best polynomial approximation on the unit sphere and the unit ball. The central problem is to describe the approximation behavior of a function by polynomials via smoothness of the function. A major effort is to identify a correct gadget that characterizes smoothness of functions, either a modulus of smoothness or a Kfunctional, the two of which are often equivalent. We will...

متن کامل

Sobolev Spaces with Respect to Measures in Curves and Zeros of Sobolev Orthogonal Polynomials

In this paper we obtain some practical criteria to bound the multiplication operator in Sobolev spaces with respect to measures in curves. As a consequence of these results, we characterize the weighted Sobolev spaces with bounded multiplication operator, for a large class of weights. To have bounded multiplication operator has important consequences in Approximation Theory: it implies the unif...

متن کامل

A Tool for Approximation in Bivariate Periodic Sobolev Spaces

We give a characterization of Sobolev spaces of bivariate periodic functions with dominating smoothness properties in terms of Sobolev spaces of univariate functions. The mixed Sobolev norm is proved to be a uniform crossnorm. This property can be used as a powerful tool in approximation theory. x1. Introduction Beside the approximation of functions from the usual isotropic periodic Sobo-lev sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010